You are here

DNp theorem list

Copyright: the following theorem list is an excerpt from Notes on Propositional Classical Logic (manuscript) by José M. Méndez, and it is reproduced here with permission.

T Standard notation Polish notation
T1 A → (B → A) CpCqp
T2 [A → (B → C)] → [(A → B) → (A → C)] CCpCqrCCpqCpr
T3 A → A Cpp
T4 (B → C) → [(A → B) → (A → C)] CCqrCCpqCpr
T5 [(A → B) → C] → (B → C) CCCpqrCqr
T6 [(A → B) → (A → C)] → [B → (A → C)] CCCpqCprCqCpr
T7 [A → (B → C)] → [B → (A → C)] CCpCqrCqCpr
T8 (A → B) → {[A → (B → C)] → (A → C)} CCpqCCpCqrCpr
T9 (A → B) → [(B → C) → (A → C)] CCpqCCqrCpr
T10 [(A → B) → (A → C)] → [A → (B → C)] CCCpqCprCpCqr
T11 A → [(A → B) → B] CpCqCpq
T12 [(A → A) → B] → B CCCppqq
T13 [A → (A → B)] → (A → B) CCpCpqCpq
 
T14 (¬A → ¬B) → (B → A) CCNpNqCqp
T15a ¬A → (A → B) CNpCpr
T15b A → (¬A → B) CpCNpr
T16 ¬¬A → A CNNpp
T17 A → ¬¬A CpNNp
T18 (¬A → B) → (¬B → A) CCNpqCNqp
T19 (A → B) → (¬B → ¬A) CCpqCNqNp
T20 (A → ¬B) → (B → ¬A) CCpNqCqNp
T21 (¬A → A) → A CCNppp
T22 (A → ¬A) → ¬A CCpNpNp
T23a (A → B) → [(A → ¬B) → ¬A] CCpqCCpNqNp
T23b (A → ¬B) → [(A → B) → ¬A] CCpNqCCpqNp
T24a (A → B) → [(¬A → B) → B] CCpqCCNpqq
T24b (¬A → B) → [(A → B) → B] CCNpqCCpqq
T25a (¬A → ¬B) → [(¬A → B) → A] CCNpNqCCNpqp
T25b (¬A → B) → [(¬A → ¬B) → A] CCNpqCCNpNqp
 
T26 A → (A ∨ B) CpApq
T27 B → (A ∨ B) CqApq
T28a (A ∨ B) → [(B → C) → [(A → C) → C]] CApqCCqrCCprr
T28b (A → C) → [(B → C) → [(A v B) → C]] CCprCCqrCApqr
 
T29 (A ∧ B) → A CKpqp
T30 (A ∧ B) → B CKpqq
T31 A → [B → (A ∧ B)] CpCqKpq
T32 (A → B) → [(A → C) → [A → (B ∧ C)]] CCpqCCprCpKqr
 
T33 (A ↔ B) → (A → B) CEpqCpq
T34 (A ↔ B) → (B → A) CEpqCqp
T35 (A → B) → [(B → A) → (A ↔ B)] CCpqCCqpEpq
 
T36 A ↔ A Epp
T37 (A ↔ B) → (B ↔ A) CEpqEqp
T38 (A ↔ B) → [(B ↔ C) → (A ↔ C)] CEpqCEqrEpr
T39 [A → (B → C)] ↔ [(A → B) → (A → C)] ECpCqrCCpqCpr
T40 [A → (B → C)] ↔ [B → (A → C)] ECpCqrCqCpr
T41 [A → (A → B)] ↔ (A → B) ECpCpqCpq
 
T42 ¬¬A ↔ A ENNpp
T43 (¬A → B) ↔ (¬B → A) ECNpqCNqp
T44 (A → B) ↔ (¬B → ¬A) ECpqCNqNp
T45 (A → ¬B) ↔ (B → ¬A) ECpNqCqNp
T46 (¬A → A) ↔ A ECNppp
T47 (A → ¬A) ↔ ¬A ECpNpNp
T48 (A ↔ B) ↔ (¬A ↔ ¬B) EEpqENpNq
T49 (¬A ↔ B) ↔ (A ↔ ¬B) EENpqEpNq
 
T50 [A → (B → C)] ↔ [(A ∧ B) → C] ECpCqrCKpqr
T51 (A → B) → [(A ∧ C) → (B ∧ C)] CCpqCKprKqr
T52 (A → B) → [(A v C) → (B v C)] CCpqCAprAqr
T53 [A → (B ∧ C)] ↔ [(A → B) ∧ (A → C)] ECpKqrKCpqCpr
T54 [(A v B) → C] ↔ [(A → C) ∧ (B → C)] ECApqrKCprCqr
T55 [A → (B v C)] ↔ [(A → B) v (A → C)] ECpAqrACpqCpr
T56 [(A ∧ B) → C] ↔ [(A → C) v (B → C)] ECKpqrACprCqr
 
T57 (A v B) ↔ (B v A) EApqAqp
T58 (A ∧ B) ↔ (B ∧ A) EKpqKqp
T59 [A v (B v C)] ↔ [(A v B) v C] EApAqrAApqr
T60 [A ∧ (B ∧ C)] ↔ [(A ∧ B) ∧ C] EKpKqrKKpqr
T61 A ↔ (A v A) EpApp
T62 A ↔ (A ∧ A) EpKpp
T63 A ↔ [A v (A ∧ B)] EpApKpq
T64 A ↔ [A ∧ (A v B)] EpKpApq
T65 [A ∧ (B v C)] ↔ [(A ∧ B) v (A ∧ C)] EKpAqrAKpqKpr
T66 [A v (B ∧ C)] ↔ [(A v B) ∧ (A v C)] EApKqrKApqApr
 
T67 ¬(A v B) ↔ (¬A ∧ ¬B) ENApqKNpNq
T68 ¬(A ∧ B) ↔ (¬A v ¬B) ENKpqANpNq
T69 (A v B) ↔ ¬(¬A ∧ ¬B) EApqNKNpNq
T70 (A ∧ B) ↔ ¬(¬A v ¬B) EKpqNANpNq
 
T71 (A ∧ B) ↔ ¬(A → ¬B) EKpqNCpNq
T72 (A v B) ↔ (¬A → B) EApqCNpq
T73 (A → B) ↔ ¬(A ∧ ¬B) ECpqNKpNq
T74 (A → B) ↔ (¬A v B) ECpqANpq
 
T75 A v ¬A ApNp
T76 ¬(A ∧ ¬A) NKpNp
T77 (A → B) v (B → A) ACpqCqp
T78 [(A → B) → A] → A CCCpqpp
T79 [A → (B ∧ ¬B)] → ¬A CCpKqNqNp
T80 [¬A → (B ∧ ¬B)] → A CCNpKqNqp

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer