You are here
DNp theorem list
Copyright: the following theorem list is an excerpt from Notes on Propositional Classical Logic (manuscript) by José M. Méndez, and it is reproduced here with permission.
T | Standard notation | Polish notation |
---|---|---|
T1 | A → (B → A) | CpCqp |
T2 | [A → (B → C)] → [(A → B) → (A → C)] | CCpCqrCCpqCpr |
T3 | A → A | Cpp |
T4 | (B → C) → [(A → B) → (A → C)] | CCqrCCpqCpr |
T5 | [(A → B) → C] → (B → C) | CCCpqrCqr |
T6 | [(A → B) → (A → C)] → [B → (A → C)] | CCCpqCprCqCpr |
T7 | [A → (B → C)] → [B → (A → C)] | CCpCqrCqCpr |
T8 | (A → B) → {[A → (B → C)] → (A → C)} | CCpqCCpCqrCpr |
T9 | (A → B) → [(B → C) → (A → C)] | CCpqCCqrCpr |
T10 | [(A → B) → (A → C)] → [A → (B → C)] | CCCpqCprCpCqr |
T11 | A → [(A → B) → B] | CpCqCpq |
T12 | [(A → A) → B] → B | CCCppqq |
T13 | [A → (A → B)] → (A → B) | CCpCpqCpq |
T14 | (¬A → ¬B) → (B → A) | CCNpNqCqp |
T15a | ¬A → (A → B) | CNpCpr |
T15b | A → (¬A → B) | CpCNpr |
T16 | ¬¬A → A | CNNpp |
T17 | A → ¬¬A | CpNNp |
T18 | (¬A → B) → (¬B → A) | CCNpqCNqp |
T19 | (A → B) → (¬B → ¬A) | CCpqCNqNp |
T20 | (A → ¬B) → (B → ¬A) | CCpNqCqNp |
T21 | (¬A → A) → A | CCNppp |
T22 | (A → ¬A) → ¬A | CCpNpNp |
T23a | (A → B) → [(A → ¬B) → ¬A] | CCpqCCpNqNp |
T23b | (A → ¬B) → [(A → B) → ¬A] | CCpNqCCpqNp |
T24a | (A → B) → [(¬A → B) → B] | CCpqCCNpqq |
T24b | (¬A → B) → [(A → B) → B] | CCNpqCCpqq |
T25a | (¬A → ¬B) → [(¬A → B) → A] | CCNpNqCCNpqp |
T25b | (¬A → B) → [(¬A → ¬B) → A] | CCNpqCCNpNqp |
T26 | A → (A ∨ B) | CpApq |
T27 | B → (A ∨ B) | CqApq |
T28a | (A ∨ B) → [(B → C) → [(A → C) → C]] | CApqCCqrCCprr |
T28b | (A → C) → [(B → C) → [(A v B) → C]] | CCprCCqrCApqr |
T29 | (A ∧ B) → A | CKpqp |
T30 | (A ∧ B) → B | CKpqq |
T31 | A → [B → (A ∧ B)] | CpCqKpq |
T32 | (A → B) → [(A → C) → [A → (B ∧ C)]] | CCpqCCprCpKqr |
T33 | (A ↔ B) → (A → B) | CEpqCpq |
T34 | (A ↔ B) → (B → A) | CEpqCqp |
T35 | (A → B) → [(B → A) → (A ↔ B)] | CCpqCCqpEpq |
T36 | A ↔ A | Epp |
T37 | (A ↔ B) → (B ↔ A) | CEpqEqp |
T38 | (A ↔ B) → [(B ↔ C) → (A ↔ C)] | CEpqCEqrEpr |
T39 | [A → (B → C)] ↔ [(A → B) → (A → C)] | ECpCqrCCpqCpr |
T40 | [A → (B → C)] ↔ [B → (A → C)] | ECpCqrCqCpr |
T41 | [A → (A → B)] ↔ (A → B) | ECpCpqCpq |
T42 | ¬¬A ↔ A | ENNpp |
T43 | (¬A → B) ↔ (¬B → A) | ECNpqCNqp |
T44 | (A → B) ↔ (¬B → ¬A) | ECpqCNqNp |
T45 | (A → ¬B) ↔ (B → ¬A) | ECpNqCqNp |
T46 | (¬A → A) ↔ A | ECNppp |
T47 | (A → ¬A) ↔ ¬A | ECpNpNp |
T48 | (A ↔ B) ↔ (¬A ↔ ¬B) | EEpqENpNq |
T49 | (¬A ↔ B) ↔ (A ↔ ¬B) | EENpqEpNq |
T50 | [A → (B → C)] ↔ [(A ∧ B) → C] | ECpCqrCKpqr |
T51 | (A → B) → [(A ∧ C) → (B ∧ C)] | CCpqCKprKqr |
T52 | (A → B) → [(A v C) → (B v C)] | CCpqCAprAqr |
T53 | [A → (B ∧ C)] ↔ [(A → B) ∧ (A → C)] | ECpKqrKCpqCpr |
T54 | [(A v B) → C] ↔ [(A → C) ∧ (B → C)] | ECApqrKCprCqr |
T55 | [A → (B v C)] ↔ [(A → B) v (A → C)] | ECpAqrACpqCpr |
T56 | [(A ∧ B) → C] ↔ [(A → C) v (B → C)] | ECKpqrACprCqr |
T57 | (A v B) ↔ (B v A) | EApqAqp |
T58 | (A ∧ B) ↔ (B ∧ A) | EKpqKqp |
T59 | [A v (B v C)] ↔ [(A v B) v C] | EApAqrAApqr |
T60 | [A ∧ (B ∧ C)] ↔ [(A ∧ B) ∧ C] | EKpKqrKKpqr |
T61 | A ↔ (A v A) | EpApp |
T62 | A ↔ (A ∧ A) | EpKpp |
T63 | A ↔ [A v (A ∧ B)] | EpApKpq |
T64 | A ↔ [A ∧ (A v B)] | EpKpApq |
T65 | [A ∧ (B v C)] ↔ [(A ∧ B) v (A ∧ C)] | EKpAqrAKpqKpr |
T66 | [A v (B ∧ C)] ↔ [(A v B) ∧ (A v C)] | EApKqrKApqApr |
T67 | ¬(A v B) ↔ (¬A ∧ ¬B) | ENApqKNpNq |
T68 | ¬(A ∧ B) ↔ (¬A v ¬B) | ENKpqANpNq |
T69 | (A v B) ↔ ¬(¬A ∧ ¬B) | EApqNKNpNq |
T70 | (A ∧ B) ↔ ¬(¬A v ¬B) | EKpqNANpNq |
T71 | (A ∧ B) ↔ ¬(A → ¬B) | EKpqNCpNq |
T72 | (A v B) ↔ (¬A → B) | EApqCNpq |
T73 | (A → B) ↔ ¬(A ∧ ¬B) | ECpqNKpNq |
T74 | (A → B) ↔ (¬A v B) | ECpqANpq |
T75 | A v ¬A | ApNp |
T76 | ¬(A ∧ ¬A) | NKpNp |
T77 | (A → B) v (B → A) | ACpqCqp |
T78 | [(A → B) → A] → A | CCCpqpp |
T79 | [A → (B ∧ ¬B)] → ¬A | CCpKqNqNp |
T80 | [¬A → (B ∧ ¬B)] → A | CCNpKqNqp |